液体火箭发动机(Liquid Rocket Motor)是指液体推进剂火箭发动机,即使用液态化学物质作为能源和工质的化学火箭推进系统。
常用的液体氧化剂有液态氧、四氧化二氮等,燃烧剂由液氢、偏二甲肼、煤油等,两者储存在不同的储箱中
组成部分
液体火箭发动机一般由推力室、推进剂供应系统、发动机控制系统组成。
分类
工作原理
推力室
推力室点火装置
选用固体火药点火为第一、二级发动机点火方式。
固体火药点火器通常是装有一个或几个固体推进剂的装药柱,利用电爆管起爆,在发动机启动过程中,在燃烧室和燃气发生器中,有烟火药燃烧产物形成能量很大的火炬,点燃经过头部进入燃烧室或燃气发生器的主推进剂混合物。
辅助推进系统
辅助推进系统是航天运载系统和航天器的重要组成部分,现已发展成为液体火箭推进技 术领域中的一个重要分支。辅助推进系统的功用包括:姿态控制、速度修正、轨道变换租修 正、位置保持、推进剂沉底以及航天器上的各种辅助动力装置等。这种推进系统要求在真空 和失重环境中可靠起动,能持续或脉冲工作,工作次数甚至可高达数十万次以上。
辅助推进系统除总冲要求极小的情况下采用气体喷射以外,大都采用单组元或双组元液 体推进剂发动机。
单组元阱催化分解发动机具有系统简单、响应灵敏、稳态和脉冲工作重复性好等优点,已广泛应用于各种航天器和运载系统的姿态控制以及正推、末速修正、推进剂沉底和位置保持等。
燃烧室
供应系统
推进剂供应系统的功用是按要求的流量和压力向燃烧室输送推进剂。按输送方式不同,有挤压式(气压式)和泵压式两类供应系统。挤压式供应系统是利用高压气体经减压器减压后(氧化剂、燃烧剂的流量是靠减压器调定的压力控制)进入氧化剂、燃烧剂贮箱,将其分别挤压到燃烧室中。挤压式供应系统只用于小推力发动机。大推力发动机则用泵压式供应系统,这种系统是用液压泵输送推进剂。
控制系统
发动机控制系统的功用是对发动机的工作程序和工作参数进行调节和控制。工作程序包括发动机起动、工作。关机三个阶段,这一过程是按预定程序自动进行的。工作参数主要指推力大小、推进剂的混合比。
液体火箭发动机的优点是比冲高(250~500秒),推力范围大(单台推力在1克力~700吨力)、能反复起动、能控制推力大小、工作时间较长等。液体火箭发动机主要用作航天器发射、姿态修正与控制、轨道转移等。
液体火箭发动机是采用液体推进剂的火箭发动机的简称。液体推进剂由输送系统送到发动机泵前,经泵加压后进行发动机推力室的燃烧室进行燃烧或分解,将推进剂的公演能变为热能,产生高温高压燃气,通过推力室喷管膨胀,将热能变为动能,以高速方式从喷管内向外喷出,产生反作用力——推力,为火箭飞行提供所需的动力。
液体火箭发动机的工作过程一般包括启动、额定工作和关机。启动过程是火箭发动机接到启动指令,打开启动阀门至发动机推力达到额定工作状态的过程;额定工作过程是发动机性能参数处于设计参数工作状态;关机过程是发动机接到关机指令后,切断副系统和主系统的推进剂供应,推力迅速下降到零的过程。
液体火箭发动机主要由推力室、涡轮泵、燃气发生器、火药启动器和各种阀门、调节器、管路等组成。推进剂在推力室内的燃烧过程和膨胀过程非常复杂,因此对推力室内工作过程的分析非常困难。另外,在推力室的研制过程中必须解决燃烧的不稳定性问题。拉瓦尔式喷管是推力室的重要组成部分,喷管内型面的设计要在尽可能小的尺寸和结构重量下,使喷管内高温、高压燃气的流动过程接近于理想过程,能量损失最少而效率高。因此,对喷管构型的研究、流场性能的分析以及结构设计上的创新是推力室设计研制的重要课题。
涡轮泵是由气体涡轮、燃料泵和氧化齐泵等组成,其功用是由涡轮带动泵,将来自贮箱的推进剂的压力由几百千帕提高到几万千帕。然后再送入发动机推力室。涡轮泵结构复杂、工作条件苛刻、压头高,因此,设计效率高的涡轮泵也是发动机研制中的关键。
主要优缺点
同固体火箭发动机相比,液体火箭发动机通常具有以下
优点
1. 通常比冲最高,在推进剂量一定的情况下飞行器速度最大或者有效载荷最重。
2. 推力可调,可随意启动、关机;可脉冲工作(有些小脉冲发动机能工作25万次以上);
推力时间曲线可任意控制,能实现飞行弹道重复。
3. 可在临使用前进行全面的检测,飞行前可在地面或发射台作全推力试车。
4. 能设计成经发射场维护和检测后可重复使用的。
5. 推力室可冷却,可降低质量。
6. 可贮存液体推进剂在飞行器上的贮存已经超过20年,发动机可快速投入使用。
7. 对于泵压式供应系统和较大的总冲,推进系统死重(包括贮箱)相当小(薄壁、低压贮
箱),推进剂质量分数高。
8.大多数推进剂的排气无毒,环保能接受。
9. 同一推进剂供应系统可为飞行器各处的多个推力室供应推进剂。
10. 工作期间为防止出现可能导致任务或飞行器失败的故障而可以改变工况。
11. 能实现组件冗余以提高可靠性(如双重单向阀或额外推力室)。
12. 多发动机情况下能设计成在一个或多个发动机关机后系统仍能工作(发动机故瘴工作能
力)。
13. 低压贮箱的形状能按多数飞行器的空间限制设计(即安装在机冀或鼻锥内)。
14. 淮进剂贮箱在飞行器内的布局能最大程度地减小动力飞行段重心的变化量,提高了飞行
器的飞行稳定性、减小了控制力。
15. 通常羽流辐射很弱,烟雾很少。
缺点
1. 设计相对比较复杂,组部件较多,故障模式较多。
2. 低温推进剂无法长期贮存,除非贮箱隔热良好、逸出的蒸气重新凝结。推进剂在发射台
加注,需要低很推进剂贮存设备。
3. 有几种推进剂的泄漏或溢出会引起危险、腐蚀、有毒和火灾,但采用胶体推进剂可大大
减少这种危害。
4. 对于大多数工作时间短、总冲低的应用,总重量较大(推进剂质量分数低)。 非自燃推进剂需要点火系统。
5. 需要独立的增压子系统给贮箱增压。这可能需要长期贮存高压( 2000一10000 psi}惰性
气体。
6. 控制燃烧不稳定性的难度较大。
7. 枪击会造成泄漏,有时会引起曹火,但一般不会发生爆炸,胶体推进剂可减小甚至消除
这些危害。
8. 少数推进剂(如红烟硝酸)的烟雾有毒。
9. 由子推进剂平均密度较低、发动机组件安装效率相对较低,一般所需空间较大。
10. 若飞行器解体、燃料和氧化剂紧密混合,则有可能〔但一般不会〕产生爆炸性混合物。 贮箱内的晃动会给飞行稳定性带来问题,但可用隔板把问题减到最小程度。 若贮箱出口露空,吸入的气体会引起燃烧中断或燃烧振荡。
11. 某些烃类燃料会产生含烟〔灰)的排气羽流。
12. 零重力环境下的启动需采取专门的设计措施。
13. 低温液体推进剂有启动延迟,因为把系统流道硬件冷却到低温需要一段时间。 需冷却的大型推力室的寿命大概限于一百多次启动。
14. 大推力发动机的启动时间需好几秒。
现状及发展趋势
基于过程神经网络的液体火箭发动机状态预测
二零一六年八月一日,中国新型500吨级液体燃料火箭发动机关键技术试验取得成功,紧接着,3米直径两段试验固体助推器试验成功。这两个消息标志着中国未来载人登月和深空探测的主要运载火箭,与美国“土星5号”,新一代SLS火箭相提并论的“长征9号”预研工作初露曙光。(如图“土星5号”的F-1发动机)
我国研究课题: