葛洲坝工程具有发电、改善航道等综合效益。电站装机容量271.5万千瓦,单独运行时保证出力76.8万千瓦,年发电量157亿千瓦·时(三峡工程建成以后保证出力可提高到158万~194万千瓦,年发电量可提高到161亿千瓦·时)。电站以500千伏和220千伏输电线路并入华中电网,并通过500千伏直流输电线路向距离1000公里的上海输电120万千瓦。
地理环境
坝址以上控制流域面积100万平方公里,为长江总流域面积的55%。坝址处多年平均流量14300立方米/秒,平均年径流量 4510亿立方米。多年平均输沙量5.3亿吨,平均含沙量12千克/立方米,90%的泥沙集中在汛期。
相关数据
控制流域面积 1000000 平方公里 多年平均流量 14300 立方米/秒
设计洪水流量 86000 立方米/秒 总库容 15.8 亿立方米
装机容量 271.5 万千瓦 主坝坝型 混凝土闸坝
最大坝高 47 米 坝顶长度 2606.5米
坝基岩石 砂岩 粉砂岩 砾岩 坝体工程量 580万立方米(一期混凝土)
主要泄洪方式: 泄水闸
通航标准
(三江航道)设计船队: 最大船队为“三驳一顶”,即一艘2000马力拖轮顶推三艘1500、1000吨船梭型船队,三峡枢纽建成后最大船队为“四驳一顶”,即一艘4000马力拖轮推四艘3000吨驳船的船队。
通航流量
三江正常通航航流量:45000立方米/秒;
三江最大通航流量:60000立方米/秒;
大江最大通航流量:200003立方米/秒;
通航水位
上游:66±0.5米
修建背景
1970年5月,为了缓解华中地区工业用电十分紧缺的局面,武汉军区和湖北省革命委员会向中央建议先修建葛洲坝工程。中央在研究了葛洲坝工程与三峡工程的关系,并听取了对先建葛洲坝工程的不同意见后,于1970年12月26日批准了兴建葛洲坝工程,并指出这是有计划、有步骤地为建设三峡工程作实战准备。
长江三峡段,坡度陡,落差大,峡长谷深,不但水利资源丰富,又有优良的坝址,是建设大型水利枢纽工程的理想地点。毛泽东曾为此写下了“高峡出平湖”的壮丽诗篇。葛洲坝水利枢纽工程位于宜昌市区西部的长江干流上,坝址距三峡出口南津关2.3公里,距三峡大坝坝址37公里,距宜昌市中心4公里,因坝址横穿江心小岛葛洲而得名。这里的江中有葛洲和西坝洲两个小岛,把长江分割成三条水道。
周恩来向全国人民提出了“为充分利用中华人民共和国五亿四千万千瓦的水力资源和建设长江水力枢纽的远大目标而奋斗”,同时他还指出:“若不修建长江三峡水力枢纽工程,长江防洪就得不到彻底解决,也更谈不上综合利用问题。我们修建三峡大坝,就是为了从根本上解决洪水的威胁,实现毛主席‘高峡出平湖’的宏伟理想,使它永远造福于人民。”
1958年二、三月间,周恩来在李富春、李先念两位同志的陪同下,从武汉溯江而上,视察了三峡,踏勘了三峡的两个坝区,便确定了长江的治理和远景规划。
1970年冬,周恩来亲自主持中央政治局会议,研究和讨论了长江三峡枢纽工程的组成部分——葛洲坝水利枢纽工程的有关问题。随后,毛泽东批示“赞成兴建此坝”。这年12月30日,正式开始建设葛洲坝水利枢纽工程。
结构
主要结构
葛洲坝水利枢纽工程由船闸、电站厂房、泄水闸、冲沙闸及挡水建筑物组成。船闸为单级船闸,一、二号两座船闸闸室有效长度为280米,净宽34米,一次可通过载重为1.2万至1.6万吨的船队。每次过闸时间约50至57分钟,其中充水或泄水约8至12分钟。三号船闸闸室的有效长度为120米,净宽为18米,可通过3000吨以下的客货轮。每次过闸时间约40分钟,其中充水或泄水约5至8分钟。上、下闸首工作门均采用人字门,其中一、二号船闸下闸首人字门每扇宽9.7米、高34米、厚27米,质量约600吨。为解决过船与坝顶过车的矛盾,在二号和三号船闸桥墩段建有铁路、公路、活动提升桥,大江船闸下闸首建有公路桥。
两座电站共装有21台水轮发电机组,其中:大江电站装机14台、单机容量12.5万千瓦,二江电站装机7台(17万千瓦2台、12.5万千瓦5台),总装机容量271.5万千瓦,每年可发电157亿千瓦时。电能用分别用500千伏和220千伏外输。
二江泄洪闸是葛洲坝工程的主要泄洪排沙建筑物,共有27孔,最大泄洪量83900立方米/秒,采用开敞式平底闸,闸室净宽12米,高24米,设上、下两扇闸门,尺寸均为12×12米,上扇为平板门,下扇为弧形门,闸下消能防冲设一级平底消力池,长18米。大江冲沙闸为开敞式平底闸,共9孔,每孔净宽12米,采用弧形钢闸门,尺寸为12x19.5米,最大排泄量20000立方米/秒。三江冲沙闸共有6孔采用弧形钢闸门,最大泄量10500立方米/秒。如果您是汛期到此,那么您将观赏到:泄洪闸前,洪波涌起,惊涛拍岸。巨大的水头冲天而起,溅起的水沫形成漫天水雾,即使您立于百米之外,也会感到水气拂面,沾衣欲湿;如遇朗朗晴天,水雾反射的阳光,在泄洪闸前形成一道彩虹,直插江中,极为壮观。
外形结构
葛洲坝水利枢纽工程位于湖北省宜昌市三峡出口南津关下游约2.3公里处。长江出三峡峡谷后,水流由东急转向南,江面由390米突然扩宽到坝址处的2200米。由于泥沙沉积,在河面上形成葛洲坝、西坝两岛,把长江分为大江、二江和三江。大江为长江的主河道,二江和三江在枯水季节断流。葛洲坝水利枢纽工程横跨大江、葛洲坝、二江、西坝和三江。
建造过程
葛洲坝水利枢纽工程的研究始于50年代后期。1970年12月30日破土动工。1974年10月主体工程正式施工。整个工程分为两期,第一期工程于1981年完工,实现了大江截流、蓄水、通航和二江电站第一台机组发电;第二期工程1982年开始,1988年底整个葛洲坝水利枢纽工程建成。
在大坝合拢过程中,当龙口只剩20米宽时,滔滔的江水咆哮着、怒吼着,25吨重的混凝土块一投下去马上就被发狂的江水轻易冲走,冲了再投,投了再冲,就这样一直持续了两个多小时,坝头仍毫无进展。后来截流大军用粗实的钢丝绳把四个25吨重的混凝土块联成“葡萄串”,两岸同时把两幢共重200吨的“葡萄串”抛入龙口,大坝才终于合拢。
建坝后由于航道水位提高,一扫过去三峡航道上的险滩,使货运量由400万吨左右猛增到5000万吨上。发电是建坝的一个重要原因,大江和二江河道上各建一座低水头经流站,二江电站的机组是中华人民共和国目前最大的低水头转桨式水轮发电机组。葛洲坝水电站的电流不断输往湖南、湖北、河南等地。为了防止泥沙淤积,大坝两边还建造了两座冲沙闸,用来束水冲沙。若无此装置,坝的上游只需100年就会被泥沙填平,整个工程全部报废。为了在特大洪水时泄洪,葛洲坝还具有泄洪闸,既下泄洪水,又对洪水起到缓冲作用,在一定程度上减轻洪水对下游的危险。
设施
坝轴线长2595.1 米,设计蓄水位高程66 米,坝顶高程70 米。大坝使上游水位抬升20 多米,控制流域面积100 万平方公里,总库客15.8 亿立方米。洪水季节回水110 多公里,到达巴东以上;枯水季节回水210 多公里,到达奉节县城,可将三峡暗礁险滩淹没,改善了川江航道。
两座电站的厂房,分设在二江和大江。二江电站设2台17万千瓦和5台12.5万千瓦的水轮发电机组,装机容量为96.5万千瓦。大江电站设14台12.5万千瓦的水轮发电机组,总装机容量为175万千瓦。电站总装机容量为271.5万千瓦。二江电站的17万千瓦水轮发电机组的水轮机,直径11.3米,发电机定子外径17.6米,是当前世界上最大的低水头转桨式水轮发电机组之一。二江泄水闸共27孔,是主要的泄洪建筑物,最大泄洪量为83900立方米/秒。三江和大江分别建有6孔9孔冲沙闸,最大泄水量分别为10500立方米/秒和20000立方米/秒,主要功能是引流冲沙,以保持船闸和航道畅通;同时在防汛期参加泄洪。挡水大坝全长2595米,最大坝高47米,水库库容约为15.8亿立方米。
技术问题
泥沙问题
解决坝区引航道泥沙淤积,是保证航运畅通的首要问题。根据宜昌站二十五年泥沙测验资料,平均每年泥沙输移癖量约5.26 亿吨。根据颗粒分析:其中小于0.1毫米的冲泻质泥沙4.64亿吨;0.1~1.0毫米以上的粗沙、砾石、卵石约57万吨,全部推移。悬移质汛期占90%,推移质更集中在汛期,枯季只占1~2%。
为了解决水流条件与泥沙淤积的矛盾,参照我国多年来治河工程以及水库冲淤的经验,结合长江水量丰沛、含沙量不大的特点,考虑采用防淤堤把引航道与主流分开,并设置冲沙闸,形成有利于束水冲沙的人工航道,通过“静水过船,动水冲沙”的途径,解决引航道淤积问题。
通航问题
川江航道全长660公里,水流湍急,滩险很多,有些滩险在洪枯期需设绞过滩,通过能力受到限制。
葛洲坝水利枢纽建成后,汛期大洪水时,回水110公里,到巫峡下口的官渡口;非汛期回水180公里,到瞿塘峡下的黛溪。回水所及,正是川江航道最艰险的一段,这段航道得到了改善。
建坝后,对于通航问题,除防止航道淤积问题已如前述外,主要有:引航道布置问题;船闸规模问题和南津关航道整治问题。
一、引航道布置问题 据长航资料,川江航运最大驳船为1500吨,吃水2.6米。现在营运的最大船队组成,为二艘1500吨驳船,一艘800吨驳船,加拖轮,三驳一顶,船队长163米,宽27米,要求航道最小水深2.9米,最小宽度90米,规划远景最大船队为四艘3000吨驳船加拖轮,天平形船队,长230米,宽31.6米,吃水3.30米。上游引航道直线段长度为1000米,三江下游航道宽为150米,水深减为4.5米,可以满足通航要求。
二、 关于船闸规模 地方航运部门规划,一九九0年过坝货运量为473万吨(其中下水440万吨)。
三江船闸选用一大一小方案,大船闸长280米,宽34米,槛上水深5米;小船闸长120米,宽18米,槛上水深3.5米。
三、南津关航道整治问题建坝后,船队出南津关进入三江和大江航道,需绕开泡旋区或穿过泡旋区,航行有困难。
导流截流问题
二江泄水闸消能防冲和导流截流问题 三江泄水闸承担着以下主要任务:
1、永久性长期泄洪时,有良好的上下游水流衔接条件,保持有利的河势;
2、大江截流时过水,保证胜利截流;
3、二期导流时,通过绝大部分的水流,消能防冲问题得到很好解决,保证建筑物安全;
4、排泄推移质泥沙;
5、加大导流过水能力,降低二期大江上游围堰施工强度,使围堰能在汛前抢修至设计高程。通过一九七三年以来的模型试验研究和分析计算,二江泄水闸数量以25~28孔为宜,截流水头可降为3米左右,采用一定措施,可以实现胜利截流,当通过71100立方米/秒流量时,单宽流量约120~140立方米/秒,下游消能防冲条件得到改善,可以做到安全导流。
工程效益
发电方面
设计装机容量271.5万千瓦,多年平均发电量157亿度,实际运行结果,最大出力和多年平均发电量均可超过设计值,与火电比较,每年可节约原煤约1000万吨左右,大体上相当于3~5个荆门热电厂(装机容量62.5万千瓦)、一个平顶山煤矿(1979年年产量1047万吨)、一条焦枝铁路(综合通过能力约1100万吨)的功能。
电量
葛洲坝水利枢纽工程具有发电、改善峡江航道等效益。它的电站发电量巨大,年发电量达157亿千瓦时。相当于每年节约原煤1020万吨,对改变华中地区能源结构,减轻煤炭、石油供应压力,提高华中、华东电网安全运行保证度都起了重要作用。仅发电一项,在1989年底就可收回全部工程投资。
航运方面
葛洲坝工程建成后改善了川江200公里三峡峡谷航道条件,淹没了100公里内的青滩、泄滩等急流滩21处,崆岭等险滩9处,取消单行航道和绞滩站各9处,使这一航道的水面比降降低,航道流速减小,为航运发展提供了有利条件,航运安全度增加,宜昌至巴东的航行时间缩短区间;航运成本降低及小马力船拖带量提高。但也增加船舶(队)过坝的环节和时间。三条船闸设计年通航时间320天。每于过闸时间51~57分钟(大船闸)和30~40分钟(中船闸),三江航道汛期停航流量60000立方米/秒(施工期45000立方米/秒),实际运行结果,船闸和航道的设计指标,除下游航道在枯水季有时达不到设计航深外,可达到设计值并略有提高。
水位改善
葛洲坝水库回水110至180公里,由于提高了水位,淹没了三峡中的21处急流滩点、9处险滩,因而取消了单行航道和绞滩站各9处,大大改善了航道,使巴东以下各种船只能够通行无阻,增加了长江客货运量。自1981年6月通航以来,作为配合三峡工程建造的反调节航运梯级工程,极大地改善了长江三峡区域120公里水域的通航条件,大量货船从此安全畅通地出入川江。1982年葛洲坝船闸货物通过量不到400万吨,之后每年有所增加,1994年突破1000万吨。
水利工程
葛洲坝水利枢纽工程施工条件差、范围大,土石开挖回填达7亿立方米,混凝土浇注1亿立方米,金属结构安装7.7万吨。建成后发挥了巨大的经济和社会效益,提高了中华人民共和国水电建设方面的科学技术水平,培养了一支高水平的进行水电建设的设计、施工和科研队伍,为中华人民共和国的水电建设积累了经验。
葛洲坝水利枢纽(GezhoubaWaterControlProject) 长江干流上修建的第1 座大型水利枢纽。位于湖北省宜昌市。长江在此被葛洲坝和西坝两小岛自右至左分割为大江、二江、三江3 条水道。主航道大江宽800 米,枯季水深约10 米;二江宽300 米,三江宽550 米,仅于汛期分流,枯水期断流,两岛与市区之间徒步可涉。葛洲坝水利枢纽大坝即横跨在上述3 条水道上。
工程主要建筑
江、大江两线航道,航道与泄水闸之间分别布置二江及大江电厂。二江电站厂房装有7台低水头转浆式水轮发电机组,共96.5万千瓦。大江厂房装机14台,单机容量12.5万千瓦,共175万千瓦。
工程工期
一期工程于1981年1月4日胜利实现大江截流,同年6月三江通航建筑物投入运行,7月30日二江电厂第1台17万千瓦机组开始并网发电。工程曾于1981年7月19日经受了长江百年罕见的特大洪水(72000立方米/秒)考验,大坝安然无恙,工程运行正常。一期工程于1985年4月通过国家正式竣工验收,并荣获国家优质工程奖,大江截流工程荣获国家优质工程项目金质奖。二期工程于1982年开始全面施工,1986年5月31日大江电厂第1台机组并网发电,1987年创造了一个电站1年装机发电6台的中华人民共和国记录,1号船闸及大江航道于1988年8月进行实船通航试验。1988年12月6日最后1台机组并网发电,整个工程约提前1年建成。
相关介绍
葛洲坝水电站是中华人民共和国长江干流上的第一座大型水利枢纽,兼顾兴利,防洪和通航功能。大坝位于湖北省宜昌市三峡出口南津关下游约3公里处。
葛洲坝水电站是三峡水利枢纽工程的反调节工程,位于三峡大坝下游38千米处,它的成功实践,为长江三峡水利枢纽工程建设进行了实战准备。大坝顶全长2606.5米,最大坝高53.8米,控制流域面积100万平方千米,总库容量15.8亿立方米。整个工程分两期。一期工程包括二江的发电站、泄水闸和三江的二、三号船闸、冲沙闸及其他挡水建筑物。二江电站装有7台水轮发电机组,一、二号机组容量为17万千瓦,其余5台机组容量为12.5万千瓦。工程于1970年12月30日开工,1981年1月3日大江开始截流。6月21日三江船闸正式通航,7月31日二江电站一号机组并网发电。二期工程包括大江电站、一号船闸、大江冲沙闸和混凝土挡水坝等。电站设计装机14台,机组容量12.5万千瓦。1988年葛洲坝工程全部完成,水电站设计总装机容量271.5万千瓦,平均年发电量141亿千瓦时。
作用
1981年开始发电、1989年全部建成的葛洲坝工程不仅缓解了华中地区电力紧缺的局面,葛洲坝总装机271.5万千瓦,多年平均发电157亿千瓦时,保证机率45万千瓦。解决华中、华东缺电的现状。
葛洲坝27孔泄水闸和15孔冲沙闸全部开启后的最大泄洪量,达每秒11万立方米,起到了很好的防洪作用。
葛洲坝工程也显著改善了三峡河段航道条件,到目前为止,改善长江航道两百多公里,淹没险滩21处。
同时,葛洲坝工程还培养锻炼了一支具有高水平的巨型水利水电工程的科研、设计、施工、管理队伍,为建设三峡工程积累了宝贵的经验,也确实为修建三峡工程作了实战准备。
三峡工程
葛洲坝工程是三峡水利枢纽工程的重要组成部分。开始设计三峡工程方案时,根本没有想到要兴建葛洲坝工程,而是后来在讨论三峡大坝的选址问题的过程中,经过不同意见的争论,形成了“三峡工程—葛洲坝工程方案”,这才有了葛洲坝工程的建设。
二十世纪六七十年代,当时的国力有限,领导人更担心一旦与美、苏开战,三峡大坝一旦被炸,四分之一甚至半壁江山将被水淹,人命和财物损失难以承受。三峡工程下游的葛洲坝工程可算是折衷和预备方案。
在长江干流梯级开发规划中,葛洲坝工程是三峡工程的航运反调节梯级,修建三峡工程就需要修建葛洲坝工程。这是因为:
一、从航运方面考虑,一则三峡水电站在枯水期担负电网调峰任务时,发电与不发电时的下泄流量变化较大,下游将产生不稳定流,一天24小时内的水位变幅也较大,对船舶航行和港口停泊条件不利,因此,必须利用葛洲坝水库进行反调节。
二、三峡坝址三斗坪至南津关有38公里山区河道,如不加以渠化而让其仍处于天然状态,航道条件较差,难以通过万吨级船队,三峡工程的航运效益也难以发挥。因此,需要利用葛洲坝水库渠化该段航道。从发电方面考虑,从三斗坪到葛洲坝之间,尚有27米水位落差可以用来发电,可发电150多亿千瓦时,效益十分可观。
按照长江干流梯级开发规划中的建设顺序,三峡工程下游的葛洲坝工程宜在三峡工程开工之后几年开始修建,以避免三峡工程在葛洲坝水库中修建大江土石围堰。
例行“大体检”
葛洲坝于1970年开工建设。由于当时中华人民共和国没有修建此类大坝的经验,10万建设者边勘测、边设计、边施工,用人拉肩扛的方式,克服难以想象的困难,花费10年时间最终修成。日常坚持严格检查与维护,根据情况隔一段时间进行大规模全面检测,使这座大坝建成30多年来,一直保持平稳运行。
本次“体检”于2012年4月27日开始启动,2012年9月结束,是葛洲坝自1981年投入运行以来进行的第三次全面检测,由国家电力监管委员会大坝安全监察中心负责组织。由郑守仁、徐麟祥等16名来自全国水工、监测、运行、金结等领域的权威专家组成专家组,对大坝地基剪切带性状、泄水闸弧门面板泥沙磨蚀成因、船闸底板结构缝渗漏等问题进行了大量检查和分析,对闸坝的安全状态进行了全面评价。最终,专家组根据工程运行实际情况和多个专项检测、分析的研究成果,经认真讨论,一致同意葛洲坝水利枢纽大坝为正常坝的“诊断”结果。2012年9月24日,投入运行31年的“万里长江第一坝”——葛洲坝,完成例行“大体检”。专家组在经过长达一年半的检测后认定:葛洲坝水利枢纽大坝为正常坝。
据悉,葛洲坝今后每5年进行一次全面“体检”将成为惯例,下一次“体检”的开始时间为2016年。