土壤学中的土壤水是指在一个大气压下,在105℃条件下能从土壤中分离出来的水分。土壤水是植物生长和生存的物质基础,它不仅影响林木、大田作物、蔬菜、果树的产量,还影响陆地表面植物的分布。在土壤学中,根据对土壤水的研究方法的不同有两种土壤水分分类,一种是从能量的点来研究土壤水,从而形成水的能量分类,它主要研究水的能量状态和水的运动,主要用于研究分层土壤中水分运动、不同介质中水分的转化(蒸发、蒸腾),水分在土壤-植物-大气连续体(SPAC)中的运移和土壤水对植物的有效性。
简介
概念
是指土粒表面靠分子引力从空气中吸附的气态水并保持在土粒表面的水分。
包气带土壤孔隙中存在的和土壤颗粒吸附的水分。通常有下列4种形式:①吸附在土壤颗粒表面的吸着水。又称强结合水。土壤颗粒对它的吸力很大,离颗粒表面很近的水分子,排列十分紧密,受到的吸引力相当于10000个大气压。这一层水溶解盐类能力弱,-78℃时仍不冻结,具有固态水性质,不能流动,但可转化为气态水而移动。②在吸着水外表形成的薄膜水。又称弱结合水。土粒对它的吸引力减弱,受吸力为31~6.25大气压 ,与液态水性质相似,能从薄膜较厚处向较薄处移动。③依靠毛细管的吸引力被保持在土壤孔隙中的毛细管水 。所受的吸力为6.25~0.08大气压。毛细管水可传递静水压力,被植物根系全部吸收。④受重力作用而移动的重力水,具一般液态水的性质。除上层滞水外不易保持在土壤上层。土壤水的增长、消退和动态变化与降
水、蒸发、散发和径流有密切关系。
的力一般分为吸湿水、毛管水和重力水,分别代表吸附力、弯月面力和重力作用下的土壤水。苏联学者还把由土粒表面的吸着力所保持的水分为吸湿水和结合水,后者又分为紧结合水和松结合水;毛管水又分为毛管支持水、毛管悬着水以及毛管上升水;重力水分渗透自由重力水和自由重力水等。土壤水是土壤的重要组成,是影响土壤肥力和自净能力的主要因素之一。
固态水——土壤水冻结时形成的冰晶。
汽态水——存在于土壤空气中的水蒸汽。
束缚水——又分为吸湿水(紧束缚水)和膜状水(松束缚水)
自由水——又分为毛管水、重力水和地下水,其中毛管水又分为悬着水和支持毛管水。
吸湿水
的重量又逐渐增加,直到与当时空气湿度达到平衡为止,并且随着空气湿度的高低变化而相应地作增减变动。上述现象说明土壤有吸收水汽分子的能力。以这种方式被吸着的水,称为吸湿水。 土壤的吸湿性是由土粒表面的分子引力、土壤胶体双电层中带电离子以及带电的固体表面静电引力与水分子作用所引起的,这种引力把偶极体水分子吸引到土粒表面上,吸附水分子过程释放能量(热能)。因此,土壤质地愈粘,比表面积愈大时,它的吸湿能力也愈大。图6-1表示土壤不同粒级范围内吸湿水含量与空气相对湿度的关系。引起吸湿作用距离很短,只等于几个水分子的直径,但作用力很大,因而不仅能吸收水汽分子,并且能使水分子在土粒表面密集,吸湿水的密度可达1.7左右。所以这种水不能被植物吸收,对于植物来讲为无效水。重力也不能使吸湿水移动,只有在吸收能量转变为汽态的先决条件下才能运动,因此称为紧束缚水。
1、小于0.002毫米的粒级
2、0.002-0.006毫米的粒级
3、0.006-0.02毫米的粒级
4、大于0.02毫米的粒级
膜状水
土粒饱吸了吸湿水之后,还有剩余的吸收力,虽然这种力量已不能够吸着动能较高的水汽分子,但是仍足以吸引一部分液态水,在土粒周围的吸湿水层外围形成薄的水膜,以这种状态存在的水称为膜状水。尽管重力也不能使膜状水移动,但它本身却能从水膜较厚处往较薄处移动见图6-2,不过移动的速度极缓慢。因此,与吸湿水相比,这种水又称为松束缚水。由于部分膜状水所受吸引力,超过植物根的吸水能力,更由于膜状水移动速度太慢,不能及时补给,所以高等植物只能利用土壤中所有膜状水的一部分。当土壤还含有全部吸湿水和部分膜状水时,高等植物就已经发生永久萎蔫了。
毛管水
简介
膜状水后尚有多余的引力;土壤的孔隙系统,是一个复杂的毛管系统。因此,土壤具有毛管力(势)并能吸持液态水。毛管水就是指借助于毛管力(势),吸持和保存土壤孔隙系统中的液态水,它可以从毛管力(势)小的方向朝毛管力大的方向移动,并能够被植物吸收利用。土壤质地粘、毛管半径小,毛管力(势)就大。由于土壤孔隙系统复杂,有些地方大小孔隙互相通连,另一些地方又发生堵塞,因此,土壤中的毛管水也有好几种状态,简略地可归为两类:悬着水和支持毛管水。
悬着水
悬着水是指不受地下水源补给影响的毛管水,即当大气降水或灌溉后土壤中所吸持的液态水。壤土和粘土的毛管系统发达,悬着水主要是在毛管孔隙中,但也有一部分是在下端堵塞的非毛管孔隙内;砂土及砾质土的毛管系统不发达,大孔隙多,悬着水主要是围绕在土粒或石砾相互接触的地方,有时水环融合在一起,有时互相不甚通连,统称为触点水(图7-4P142)。在均质土壤中,当悬着水处于平衡状态时,土壤上下各处的含水量基本一致。
支持毛管水
支持毛管水是指土壤中受到地下水源支持并上升到一定高度的毛管水,即地下水沿着土壤毛管系统上升并保持在土壤中的那一部分水分。这种水在土壤中的含量,是在毛管上升高度范围内自下而上逐渐减少,到一定限度为止。造成这种现象的原因是:土壤的孔隙有大有小,形成的上升管道有粗有细,在粗的管道中水上升的高度小,在粗细的管道中水上升的高度大,所以接近地下水饱和处的支持毛管水几乎充满所有孔隙,而离水饱和区愈远则支持毛管水愈少。
粗粒间隔中的毛管水上升高度小,细粒间隙中的毛管水上升高度大(表7-1)。如果取直径为0.001mm毫米的土粒按上式计算,理论上毛管水上升高度应达75m,但从自然界观察结果看来,这个数值从未被证实。即使是粘土中,毛管水上繁荣昌盛高度也很少达到5~6米,一般都不超过3~4米。这可能是由于毛管直径过小时,孔道易被膜状水所堵塞。
重力水
当大气降水或灌溉强度超过土壤吸持水分的能力时,土壤的剩余引力基本上已经饱和,多余的水就由于重力的作用通过大孔隙向下流失,这种形态的水称为重力水。有时因为土壤粘紧,重力水一时不易排出,暂时滞留在土壤的大孔隙中,就称为上层滞水。重力水虽然可以被植物吸收,但因为它很快就流失,所以实际上被利用的机会很少;而当重力水暂时滞留时,却又因为占据了土壤大孔隙,有碍土壤空气的供应,反而对高等植物根的吸水有不利影响。
地下水
如果土壤或母质中有不透水层存在,向下渗漏的重力水,就会在它上面的土壤孔隙中聚积起来,形成一定厚度的水分饱和层,其中的水可以流动,称为地下水。从上述支持毛管水的概念中可见,土壤的饱和水层没有明显的上限。但是若在这种土壤中凿井,流出的地下水就会在井中形成自由水层。这一水层的水平面离地表的深度称为地下水位。地下水能通过支持毛管水的方式供应高等植物的需要。在干旱条件下,由于表层土壤水分缺乏,有些耐旱树种如胡杨的根系可深达3-5米以利用地下水,若地下水位高(即离地表太近),就会使水溶性盐类随着水的蒸发向表层土壤集中,特别是地下水的矿化度高(即含盐类多)的情况下,这种向上的运动,就会使土壤表层的含盐量增加到有害的程度,即所谓盐渍化。在湿润地区,如地下水过高,就会使土壤过湿,地表有季节性积水,使大多数高等植物不能生长,土壤有机残体也难分解,这就是沼泽化,必须注意防治。此外,地下水位分布较高而又季节性变动时对林木生长不利。近年来,地下水资源被过度的开发利用,导致一些贫水地区(如我国的西北地区)地下水位持续下降,给人类及动植物的生存带来严峻的挑战。
土壤水与植物
植物的根系从土壤里吸收水分,经过茎的运输进入叶内,然后再经过蒸腾作用散失到大气中,大气降水一部分进入土壤。因此,土壤水、大气水和植物体内的水构成了一个连续体。在一定范围内,大气降水多了,土壤水的含量自然也就高了。
在种子萌发前,土壤水分就开始对植物产生影响,如杨、柳的种子必须在成熟后数日内与湿土接触,否则就会失去发芽的能力。种子在萌发过程中需要水分,一是促进种皮软化,二是使凝胶状态的原生质变成溶胶状态。
因为植物的根系直接着生在土壤里,所以土壤水分含量的多少直接影响到植物根系的发育。干燥土壤上的植物,特别是草原和荒漠地区的植物,多属深根系植物;在潮湿土壤上生长的植物多属浅根系植物,这些植物的根系多数在表土以下几寸的土层中行走。
水分对植物的生长也有一个最高点、最低点和最适点。低于最低点时,植物萎蔫,生长停止。高于最高点时,植物根系缺氧、窒息、出现烂根。只有处于最适范围内,才能保证植物的水分平衡。不同植物需要的最适含水量不同,以甘薯属(Ipomoea)的几种植物为例(图3-3),生长在沙丘上的马蹄草(I. pescaprae),最适土壤含水量约为60%左右,生长在中生环境下的地瓜(I. batatas var. edulis),最适含水量约为85%左右,而生长在湿地上的水蕹(I. aquatica),最适土壤含水量可达110%以上。